NUP214-ABL1 Fusion:

A Novel Discovery in Acute Myelomonocytic Leukemia

Changing What's Possible MUSC.edu

Jessica Snider, MD

Medical University of South Carolina

Case Report - 64 year old Caucasian Male

Past Medical History → Osteoarthritis

Family History → Negative for bleeding/platelet disorders, AML or MDS

Presented to an outside hospital with 1 month history:

- > Progressive dizziness
- > Fatigue
- > Insomnia

Further work-up revealed:

- > Anemia
- > Leukopenia
- > Pain/tenderness over area of spleen

Managed with 1 unit of pRBCs and transferred to MUSC for work up:

> Suspicious for acute leukemia

Bone Marrow Biopsy performed at MUSC revealed...

Initial - Bone Marrow Biopsy

Aspirate:

- > Hypercellular
- Predominantly immature cells with minimal evidence of terminal differentiation
- > Blasts comprise 85% of cellularity

Bone Marrow:

- > 50% cellularity
- Myeloid series consists mostly of immature cells with minimal evidence of terminal differentiation

Initial - Flow Cytometry

Blasts comprise 88% of non-erythroid marrow elements, expressing:

- > CD34 (subset)
- > HLA-DR
- > CD33
- > CD13
- > CD14 (variable)
- > CD64
- > CD38
- > CD4
- > CD25 (dim)
- > CD123
- > cMPO (dim)

Consistent with monocytoid differentiation

Pertinent negatives:

CD117, CD16, CD56, CD19, CD20, sKap, sLamb, CD10, CD23, CD2, CD3, CD5, CD7, CD8, CD57, cTDT, cCD79a, cCD3, cCD22

Initial - Additional Findings

Microarray:

Single abnormal clone in 90% of cells with focal deletions of 11p including the WT1 gene, 21q including focal deletion of exons 3-8 of the RUNX1 gene, and a nested gain of exons 2-10 of the KMT2A gene

FISH:

> Inv(16) - Normal

FLT3 Status:

> Positive for FLT3-ITD mutation

Cytogenetics:

> 46,XY[20] - Normal male karyotype

Summary of Mutations:

- FLT3-ITD
- WT1 (deletion)
- RUNX1 (focal deletion)
- KMT2A (nested gain)

Initial - Clinical Management

DIAGNOSIS: Acute Myelomonocytic Leukemia

Initiated 7+3 induction chemotherapy:

> Bone marrow biopsy for day 14 post induction monitoring showed refractory disease

Enrolled in a clinical trial for FLT3 directed therapy with **Gilteritinib**

- > CTO 102233 → ASP2215
- > Tyrosine kinase inhibitor

2 - 3 months after presentation:

- Send out test for <u>FLT3</u> came back as <u>wild-type</u>
- Stopped participation in clinical trial due to progressive disease seen on 3 month follow up biopsy
- > Began salvage chemotherapy with FLAG-Ida

Follow-up - Smear & Bone Marrow Biopsy

Peripheral Smear:

> Predominance of lymphocytes with circulating blasts

Aspirate:

- Predominantly blasts with rare hematopoietic cells
- > Blasts comprise 75% of cellularity

Bone Marrow:

- > 40% cellularity
- Increased blast population identified

Follow-up - Flow Cytometry

Blasts comprise 79% of non-erythroid marrow elements, expressing:

- > CD34 (dim)
- > CD117 (dim)
- > HLA-DR
- > CD33 (dim)
- > CD13 (dim)

Indicates myeloid lineage

Pertinent negatives*: CD56, CD14, CD16, CD64

*A limited panel was used to look for minimal residual disease

Follow-up - Microarray: Major clone (~80%)

This abnormal clone showed focal deletion of exons 3-8 of the RUNX1 gene and loss of heterozygosity of 11q with nested gain of exons 2-10 of the KMT2A gene

Follow-up - Microarray: Subclone

Duplication at breakpoint of exon 2 on ABL1 gene to exon 33 of NUP214 gene

A subclone showed a gain of 9q, consistent with a NUP214-ABL1 fusion

Follow-up - Additional findings

FISH:

A break-apart probe for the NUP214
 gene revealed apparent abnormal
 signal patterns consistent with gains
 of part of the ABL1 and NUP214 genes

FLT3 status:

> FLT3 wild type

Summary of Mutations:

- RUNX1(focal deletion)
- KMT2A (nested gain)
- NUP214-ABL1 (fusion & amplification)

Cytogenetics:

> 46,XY[20] - Normal male karyotype

Follow-up - Clinical management

FLAG-Ida salvage chemotherapy initiated

- > Addition of Sorafenib
 - > Multitargeted tyrosine kinase inhibitor
 - > Currently used for HCC, RCC, differentiated thyroid cancer
 - > Off-label, nonprotocol treatment for FLT3+ AML
 - > Wanted to treat/suppress initial clone that was FLT3+

Bone marrow biopsy results post FLAG-Ida:

> No evidence of acute leukemia

Underwent allogenic matched unrelated donor hematopoietic stem cell transplant (Allo MUD HSCT)

Update - Status Post Transplant

Post-transplant complications:

- > GVHD of Skin biopsy proven grade 2
 - > Received tacrolimus & methotrexate -> resolved

Recent 6 month post-transplant Bone Marrow Biopsy:

> No morphologic or flow cytometric evidence of AML

1 year after initial presentation:

- > Still receiving sorafenib daily
 - > Plan to continue therapy for 1 2 years

Evolution of Disease

Initial Disease: (single abnormal clone)

- FLT3 → ITD mutation
- WT1 → Deletion
- RUNX1 → Deletion of exons 3-8
- KMT2A → Nested gain of exons 2-10 (PTD)

Refractory to 7+3 induction chemotherapy

Enrolls in clinical trial with Gilteritinib

2 - 3 months later

Progression of Disease: (two abnormal clones)

- RUNX1 → Deletion of exons 3-8
- KMT2A → Nested gain of exons 2-10 (PTD)
- 11q → Loss of heterozygosity
- NUP214-ABL1 → Gain/amplification with fusion

1½ months later

Initiated FLAG-Ida salvage chemotherapy

Additional round of FLAG-Ida salvage chemotherapy with addition of Sorafenib

Remission achieved, Allo MUD HSCT performed back as wild type

FLT3 testing came

Due to progressive disease, patient pulled from clinical trial

6 months later

No residual disease!

Clinical significance - NUP214-ABL1 fusion

NUP214 (nucleoporin 214):

> Nucleocytoplasmic transporter, band 9q34.13

ABL1:

> Tyrosine kinase, band 9q34.12

Previously reported in Acute Lymphoblastic Leukemias:

Comprise ~6% of T-ALLs

> Poor prognosis: usually a late event, associated with early relapse

Few cases of B-ALL

> Favorable prognosis: associated with a Ph-like form, sensitive to TKIs

Prognosis in AML \rightarrow ???

References

- Arber DA; Acute myeloid leukemia, not otherwise specified. In Swerdlow SH et al: WHO Classification of Tumour of Haematopoietic and Lymphoid Tissues. Lyon, France: IARC Press. 130-139, 2008.
- > Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127:2391-2405
- > Pratz KW, Levis M. How I treat FLT3-mutated AML. Blood. 2017;129:565-571.
- Duployez N, et al. NUP214-ABL1 fusion defines a rare subtype of B-cell precursor acute lymphoblastic leukemia that could benefit from tyrosine kinase inhibitors. Haematol. 2016;101:e133-134, PMID 5004396.
- > Zhou MH, et al. *NUP214* fusion genes in acute leukemia (Review). Oncol Lett. 2014;8:959-962, PMID 5346755.
- Roberts KG, Morin RD, Zhang J, et al. Genetic alterations activating kinase and cytokine receptor signaling in high-risk acute lymphoblastic leukemia. Cancer Cell. 2012;22:153–166.
- De Keersmaecker K, Rocnik JL, Bernad R, et al. Kinase activation and transformation by NUP214-ABL1 is dependent on the context of the nuclear pore. Mol Cell. 2008;31(1):134-42.

Acknowledgements

Medical University of South Carolina

Department of Pathology & Laboratory Medicine

- > Angie Duong, MD
- > Daynna J. Wolff, PhD
- > John Lazarchick, MD
- > Kathryn G. Lindsey, MD

Department of Hematology and Oncology

> Robert K. Stuart, MD

FINAL PANEL DIAGNOSIS:

Acute myeloid leukemia with mutated RUNX1 (with cryptic NUP214-ABL1)

