Society of Hematopathology 2017 Workshop Session 1 summary Germline Predisposition Syndromes

Olga Weinberg, MD

Myeloid Neoplasms with Germline Predispositions new recognition in the revised WHO classification

- Without a pre-exisiting disorder or organ dysfunction
 - AML with germline CEBPA mutation (2 cases)
 - Myeloid neoplasms with germline DDX41 mutation (1 case)
- Pre-existing platelet disorder
 - Germline RUNX1 (10 cases)
 - Germline ANKRD26 (1 case)
 - Germline ETV6 mutation
- Other organ dysfunctions
 - Germline GATA2 (16 cases)
 - Bone marrow failure syndromes
 - JMML associated with NF, Noonan's or Noonan-like disorders (3 cases)
 - Down syndrome

AML with germline CEBPA mutation

- Biallelic CEBPA mutations
 - Encodes a granulocyte differentiation factor on chromosome 19
 - Germline mutation at 5' end of gene
 - Somatic mutation at 3' end of the other allele
 - Acquired at the time of progression to AML
- Morphologic, immunophenotypic and cytogenetic features similar to sporadic AML with CEBPA mutations

Case 230 P. Khattar: 39 yo with strong family

Myeloid neoplasms with germline *DDX41* mutations

- Inherited mutations in the gene on chromosome 5 encoding the DEAD box RNA helicase DDX41
 - Major subset DDX41 mutation is biallelic (one mutation is germline)
- Prevalence is unclear DDX41 mutations found in 1.5% of myeloid neoplasms
- Long latency –presentation in 60s

– CASE 318 H. Kurt:

67 year-old man who had been having slowly decreasing white blood cell and platelet counts for the last 7 years

- Presented with <u>AML</u>, normal karyotype, no dysplasia
- Received transplant from his brother
- After 4 months from stem cell transplant, the patient accepted skin biopsy for further genetic testing.
 - DDX41 NM 016222.2(DDX41): c.3G>A p.M1?

Myeloid Neoplasms with Germline Predispositions AND pre-existing platelet disorders

- Germline mutations in RUNX1 gene
 - gene on chromosome band 21q22
 - encodes one subunit of the core binding transcription factor that regulates expression of several genes essential for hematopoiesis.
 - Somatic RUNX1 mutations are associated with poor prognosis in AML/MDS
- Mild to moderate thrombocytopenia
- Functional platelet defects -> prolonged bleeding
- Increased risk of developing MDS, AML or T-ALL

Cases with germline RUNX1 mutations Familial platelet disorder with predisposition to AML

Case Number	Submitter	Age	Diagnosis	Interesting aspects
219	Geyer	37	Thrombocytopenia	Variant of unknown signficance
271	Mosse	3	Thrombocytopenia	Extensive family h/o AML
309	Kanagal-Shamanna	13	Thrombocytopenia	46,XX,inv(9)(p12q13)[20]
364	Reddy	25	Thrombocytopenia	Incidental presentation

Case 271- extensive family history of AML

- *Diagnostic criteria for myeloid neoplasm in this setting is the same as for sporadic cases
- ➤ Presence of germline *RUNX1* mutations does not place case into category of myeloid neoplasm with germline predisposition syndrome category
- ➤ Thrombocytopenia with germline *RUNX1* mutation

case 200 Xiao

TAFRO — Variant of idiopathic multicentric Castleman disease

Thrombocytopenia, Anasarca, Fever, Renal dysfunction/reticulin fibrosis and Organomegaly

- 3 y/o male with no known family history presented with fever, generalized lymphadenopathy, hepatosplenomegaly, pleural effusions, ascites, thrombocytopenia and anemia.
- WBC 17.2, Hgb 7.8, platelets 14, BUN 85, Cr 0.7, Cystatin C 3.45, ALP 108, CRP 15, ESR 118, Albumin 2, and LDH 481. He also had elevated IL-6
- RUNX1 exon4 p.G87C (c.259G>T) (VAF 35%)
 - Germline analysis confirmed that the RUNX1 mutation is present in DNA from nail, lymph node and bone marrow at 50% VAF.

MDS/AML with germline RUNX1 mutations

- Risk of transformation to MDS/AML is estimated to be ~30-40%
- Progression to MDS/AML likely requires additional mutations
 - may account for some of the variation in penetrance of MDS/AML as well as the variable neoplasm phenotypes that develop

Case #	Submitter	Age	Diagnosis	Other mutations	Cytogenetic
38	Chisholm	12	AML		46,XX,t(2;11)(q31;p 15)[20]
339	Kanagal- Shamanna	7	MDS-MLD		del(5)(q31q34)
284	Bailey	32	AML	NRAS, BCOR	t(2;21)(q23;q22)

Myeloid Neoplasms with Germline Predispositions AND pre-existing platelet disorders

- Germline mutations in ANKRD26 gene
 - located on chromosome band 10p12.1
- Mutations occur within the 5' untranslated region of the gene
 - disrupt the assembly of RUNX1 and FLI1 on the ANKRD26 promoter
- Case 268 Neppalli
- 43 yo with long standing history of thrombocytopenia (and family history of thrombocytopenia)
 - Normocellular marrow but with decreased megakaryocytes and frequent hypolobated forms
 - Thrombocytopenia with germline ANKRD26 mutation

Myeloid neoplasms with germline predispositions AND other organ dysfunctions

- Germline *GATA2* mutations
- Bone marrow failure syndromes
- JMML associated with NF, Noonan's or Noonan-like disorders
- Down syndromes

Myeloid neoplasms with germline GATA2

- Four separate syndromes
 - MonoMAC syndrome
 - monocytopenia and non-tuberculous mycobacterial infection
 - Dedritic cell, monocyte B- and NK lymphoid (DCML) deficiency with vulnerability to viral infectors
 - Familial MDS/AML
 - Emberger syndrome
 - Primary lymphadema, warts, predisposition to MDS/AML

AML with germline *GATA2* mutations

Case Number	Age	Name	Diagnosis	Other mutations	Cytogenetics
20	18	Scordino	AML-MRC	-	Complex karyotype
48	6	Siegele	AML-MRC	WT1, JAK2, CSF3R, KRAS	Monosomy 7
236	30	Boyer	AML-MRC	-	Complex karyotype
266	16	Batdorf	AML-MRC	-	Normal

MDS with germline *GATA2* mutation

Case Number	Name	Age	Diagnosis	Other Mutations	Cytogenetics
105	Williams	57	MDS-MLD	-	Normal
138	Malek	13	MDS-MLD	-	Normal
157	Crane	45	MDS-MLD	-	Trisomy 21 & 8
337	Balakrishna	31	MDS-MLD	-	Trisomy 8
176	Коо	10	MDS-EB1	NRAS, PTN11, SETBP1, ASXL1	Monosomy 7
52	Moore	22	MDS-EB2	-	Monosomy 7
87	Chiu	5	RCC	ASXL1	Deletion 7q, trisomy 8
381	Wang	17	RCC	-	Trisomy 8
40	Chisholm	17	CMML-1	KRAS, NF1, SETBP1, STAT3, WT1	Monosomy 7

Other disorders with germline *GATA2* mutations

 Case 258 Hussein: 62 yo with FUO and 10 year history of lymphopenia and monocytopenia of unclear etiology

> HLH in a patient with bone marrow deficiency (MonoMAC) with germline GATA2

Myeloid Neoplasms with Germline Predispositions and organ dysfunction Noonan's syndrome

- relatively common (1/2000 births) developmental disorder
 - Characteristic appearance and congenital heart defects
 - Associated with mutations in genes that are part of the RAS/RAF/MEK/ERK signal transduction pathway
 - Variants in PTPN11 (50%), SOS1, RAF1, KRAS, NRAS, BRAF, MAPK1
- Increased risk of malignancy
 - JMML, ALL, rhabdomyosarcoma, neuroblastoma, glioma

<u>Case 99 Knez</u> – B lymphoblastic leukemia in 19 months old with Noonan's syndrome and *SHOC2* gene mutation

JMML

Mandatory

- Monocyte count > 1x109
- Blast % in PB and BM <20%
- Splenomegaly
- Absence of BCR-ABL

Case 292 Nguyen: 49 day old with dysmorphic features c/w Noonan's presents with splenomegaly and leukocytosis (50-97k/uL)

 PTPN11 c.218C>T (p.Thr73lle) missense mutation

Oncogenics

- Somatic mutation in PTPN11, KRAS or NRAS
- Clinical diagnosis of NF-1 or germline NF1
- Germline CBL mutation and loss of
- heterozygosity of CBL

If negative for oncogenics, 2 need to be met

- Monosomy 7
- HbF increased for age
- Myeloid precursors in PB
- Spontaneous growth or GM-CSF hypersensitivity
- Hyperphosphorylation of STAT5

Case 320 Curry: Newborn with prenatal diagnosis of Noonan's

- Persistent thrombocytopenia, leukocytosis, and borderline high Hgb F, but no hepatosplenomegaly
- De novo heterozygous pathogenic variant in the PTPN11 gene (p.S502L).
- Resolved at one year follow up
 - > Transient Myeloproliferative Disorder in a patient with germline *PTPN11* (Noonan's syndrome)

<u>Case 55 Bayerl</u>: 4 month-old asymptomatic girl was found to have splenomegaly, hepatomegaly, leukocytosis and anemia

- PB 9.5% blasts, **BM 29% blast**/blast equivalents
- Normal karyotype, NF1 c.1139T>G (90%)
- After diagnosis of her leukemia, she was found to have >6 café au lait macules.
 - ➤ AML-NOS with germline *NF1* mutation

AML with other inherited conditions

Case #	Submitter	Age	Diagnosis	Mutation	Cytogenetic	Syndrome	
253	Leeman-Neil	23	AML-MRC	WT1 & NF1 (somatic) BLM (germ)	Complex Karyotype	Bloom	
225	Batdorf	18 months	Therapy- related AML	Germline PTCH TGRB1 microdeletion of unknown significance	t(8;16)(p11:2;p 13.3);KAT6A- CREBBP	-	
264	Leeman-Neil	18	AML-MRC	IDH1, NRAS, WT1	Complex	Mafucci	y
234	Meyerson	53	AML	RUNX1, STAG2	Inv(3) and germline t(8;21)	-	

MDS with other inherited syndromes

Case #	Submitter	Age	Diagnosis	Mutation	Cytogenetic	T
170	Gong	11	MDS-EB2 & LCH	RBM8A	Normal	
196	Malek	11	MDS-MLD	G6PC3	Normal	
80	Klco	3,4 and 14 months	RCC MIRAGE*	SAMD9 x3	Monosomy 7x3	
273	Judd	5 months	MDS/MPN, unclassifiable MIRAGE*	SAMD9	Monosomy 7	

TAR syndrome

*MIRAGE
myelodysplasia,
infections,
restriction of
growth, adrenal
hypoplasia,

enteropathy

Lymphoid neoplasms

Case	Submitte r	Age	Diagnosis	Cytogenetics	Mutation
101	Raciti	18 months	B lymphoblastic leukemia	46,XX,i(9)(q10)[2]/46,XX[21]	Heterozygous PAX5 mutation
194	Baker	1	B lymphoblastic leukemia	Monosomy 7	ELANE mutation
346	Pullarkat	19	Classical Hodgkin lymphoma	Normal	CSF3R (variant of undetermined significance)
342	Wake	40	T-LGL and PRCA	Normal	CTLA4

T-cell LGL and pure red cell aplasia

case 342

- 40 yr old with PMH of recurrent respiratory and GI infections presented lymphocytic colitis
- Hypocellular bone marrow with diffuse, interstitial pattern and multiple non-paratrabecular lymphoid aggregates
- Erythroid precursors were absent
- Flow identified an abnormal expanded gamma delta T-cell population expressing CD3, CD8, CD57, CD2, CD7, TCR $\gamma\delta$, and heterogeneous CD5
- Tcell clonality was positive
- Mutation in the gene CTLA4 (151C>T; R51X), confirmed by Sanger sequencing
 - Also present in daughter

CD8 stain

Incidental findings

Case	Submitter	Age
333	Coberly	56
97	Raciti	6
209	Velu	38

Summary from Session 1

- 51 cases submitted in this category
- Most common cases submitted included germline mutations in GATA2 (n=16) and RUNX1 (n=10) genes
- Mostly myeloid neoplasms (MDS/AML) (n=42) but lymphoid neoplasms (including B-ALL, FL, T-cell LGL) were also submitted
- No specific clinical features
 - germline mutations are associated with non-neoplastic hematological disorders, organ dysfunction, or inherited syndromic disorders

Myeloid neoplasms with germline predisposition

- Morphology of the neoplasm depends on its subtype
- Presence of a genetic predisposition does not in itself place a case into the category of a myeloid neoplasm
- Diagnostic criteria for the germline predisposition disorders are the *same* as those for sporadic cases
 - diagnosis of MDS may be challenging in some cases
 - Early dysplastic features may not progress to MDS or AML for decades
 - Increased blasts, increasing marrow cellularity, increasing cytopenias, and/or the presence of additional cytogenetic or molecular genetic abnormalities

Rise of NGS testing in clinical setting

- Somatic or germline mutations?
- Standard sequencing cannot distinguish, but could give clues...
 - Near heterozygous (40-60%) or near homozygous (<u>></u>90%) allelic frequency
 - 'Threshold' allelic frequency to warrant germline testing is not standarized
 - Multiple mutations in CEBPA, RUNX1 or GATA2 genes
- Counseling and germline testing are next steps

Germline testing

- Cultured skin fibroblasts are preferred tissue
 - Can take 3-6 weeks for cultures to yield sufficient DNA
 - DNA from epithelial cells of hair follicles is more readily available
- Buccal swabs or saliva are frequently contaminated with hematopoietic cells and should be avoided
- Other sources include nail clippings or mesenchymal cells from bone marrow aspirate smears

Scenarios when genetic testing is advised in newly diagnosed patients with MDS/AML

- Somatic testing identified a mutation associated with germline predisposition syndrome (CEBPA, GATA2, RUNX1)
- Hematologic or cytogenetic characteristic of MDS/AML suggestive of germline predisposition
- Genetic syndrome known to predispose to cancer
- Previous malignancy, family history cancer
- Cytopenias, immune deficiency, atypical infections, lymphadema or organ-system manifestation

Thank you!