Myeloproliferative disorder, ET-like, associated with germline *SH2B3* mutation

Case SH2017-0042

Society for Hematopathology/European Association for Haematopathology 2017

Craig Soderquist MD, Shane Betman MD, Govind Bhagat MD, Bachir Alobeid MD

Family History/background

- Eastern European Ashkenazi Jewish background
- Older brother with many similar medical conditions

Chronic medical conditions from birth:

- Small for gestational age
- Mild developmental/growth delay
- Hepatitis (autoimmune)
- Progressive Splenomegaly

1 year of age:

- Irritability, fever, decreased PO intake
- Abnormal CBC:
 - WBC: 5, Hgb 5.5, Plt 55
- Bone marrow biopsy:

B-ALL, Bone marrow aspirate and biopsy

B-ALL, Bone marrow aspirate and biopsy

B-ALL:

- Flow cytometry immunophenotype:
 - TdT, CD45(dim), HLA DR, CD38, CD34, CD19, CD10, CD22(dim)
- Cytogenetics: 46,XX
- FISH: CDKN2A deletion in 42.6% of cells
- *Targeted mutational studies (NGS) were not performed

Treatment and Course:

- Initial classification: Standard Risk
- Treated according to DFCI Consortium 05-001 Protocol
- Remains in complete remission up to present day

6 years of age:

- Progressive splenomegaly (from birth)
 reached 30 cm in size, required intervention:
 - Embolization:
 - → complicated by multiple thromboses
 - Emergency splenectomy:

Spleen

• Marked acute increase in Plt count following splenectomy (188,000/ μ l \rightarrow > 3,500,000/ μ l)

Bone marrow biopsy

Bone marrow biopsy

Bone marrow biopsy

- Flow cytometry: No increase in blasts
- Cytogenetics: 46,XX
- FISH: negative for CDKN2A deletion
- NGS (467 cancer-associated genes):
 - No somatically acquired mutations
 - (including JAK2, MPL, CALR)
 - VUS: AXIN2, FANCE, and EPHB1
 - Germline homozygous mutation in SH2B3

SH2B3/LNK structure and function

- SH2B3 encodes an adaptor protein (LNK):
 - 3 functional domains
 - Dimerization domain (DD)
 - Pleckstrin homology domain (PH)
 - Src homology 2 domain (SH2)

- Inhibits the JAK/STAT pathway
- Negatively modulates signaling of several cytokine receptors

JAK-STAT pathway

SH2B3 is upregulated by STAT3/5

SH2B3/LNK inhibits JAK2

Loss of LNK → unchecked signaling

Somatic SH2B3 mutations in heme neoplasms

MPN:

- Occur in 5-7% of MPN (all subtypes)
- Missense mutations are most common
- Increased frequency in transformed MPN (13%)

ALL:

- Occur in 1-2% of ALL
- Frameshift mutations/deletions are most common
- Potentially associated with relapse

Family History

- Older Brother:
 - Hepatitis (autoimmune)*
 - Hashimoto thyroiditis
 - Glycogen storage disease
 - Growth retardation*
 - Developmental delay*
 - B-ALL*
- Younger Brother:
 - Unaffected
- Distant parental consanguinity

Family History

- Older Brother:
 - Hepatitis (autoimmune)*
 - Hashimoto thyroiditis
 - Glycogen storage disease
 - Growth retardation*
 - Developmental delay*
 - B-ALL*
- Younger Brother:
 - Unaffected

Distant parental consanguinity

Family History

- Older Brother:
 - Hepatitis (autoimmune)*
 - Hashimoto thyroiditis
 - Glycogen storage disease
 - Growth retardation*
 - Developmental delay*
 - B-ALL*
- Younger Brother:
 - Unaffected

Distant parental consanguinity

Our patient's SH2B3 mutation

c.690_691insGGCCCCG, p.D231fs*38

- Homozygous frameshift mutation in PH domain
- Deleterious mutation

 non-functional protein

Our patient's SH2B3 mutation

Our patient's SH2B3 mutation

Interesting features of case

Do germline *SH2B3* mutations/variants predispose to hematopoietic disorders?

- In this family, there appears to be evidence for predisposition to B-ALL
- Evidence for predisposition to ET-like phenotype?

Interesting features of case

How do we classify this "ET-like" disorder?

- Is hereditary/congenital thrombocytosis a reasonable consideration?
 - Germline mutation/variant
 - Mendelian pattern of inheritance
 - Polyclonal
 - In this case, we have no evidence of a clonality
 - Whole exome/genome studies would be more definitive

Follow-up

- Platelet counts have remained elevated
- Treatment:
 - **Hydroxyurea** (30mg/kg/day) for 1 year, no improvement in platelet count
 - Ruxolitinib (up to 10 mg BID) for 2 months, developed neutropenia
 - Currently being treated ASA only
- Has not had any thrombotic complications

Final Panel Diagnosis

Essential thrombocythemia with germline *SH2B3* mutation